常见气体检测技术

在大气痕量气体的检测技术中，按照测量原理主要分为有化学测量方法和光谱学测量方法。化学测量方法是以化学反应为基础进行物质分析的方法，该方法需要对气体样品进行采样和预处理，过程繁琐且采样过程中可能会带来干扰，但化学检测技术可以检测吸收光谱技术不能检测的某些痕量气体，且检测手段直接。光谱学技术无需采样和样品预处理，具有非接触，快速，高效，动态等特点，是气体检测技术的发展方向和技术主流。而目前化学测量方法和光谱学技术在很多测量应用中相互补充，可大大提高测量的灵敏度以及扩展可测气体种类。

一，化学法

化学方法主要测量原理为电化学分析方法，如库仑法和电导法等，或者根据气体物质本身的化学性质通过化学反应进行测量。化学方法主要包括便携式现场光离子检测法，色谱，质谱分析和色谱－质谱联用技术，化学传感器和化学发光方法等

1，化学反应方法
化学反应能产生某种处于电子激发态的产物，当这种产物分子发生辐射跃或将能量转移给其他会发光的分子使该分子再发生辐射跃迁时，便产生化学反应现象。

2，电化学
化学反应能产生某种处于电子激发态的产物，通过电信号检测用具有发光特性的化学反应来检测反应物的浓度。电化学分析方法，如库仑法和电导法等，或者根据气体物质本身的化学性质通过化学反应进行测量。

3，色谱，质谱相关技术
色谱法利用不同物质在不同相态的选择性分配，以流动相对固定相中的混合物进行洗脱，混合物中不同的物质会以不同的速度沿固定相移动，最终达分离的效果，色谱分离结合适宜的检测器可获得很高的灵敏度。质谱分析方法是将被测物质先分解为原子再电离成离子，而后将离子按照质荷比进行分离和检测，从而得到被测物质的组成元素信息及其含量。色谱－质谱联用技术就是将色谱的分离富集和质谱的特征鉴别相结合，对色谱法分离富集后的样品直接进行质谱的鉴别和检测。

二，光谱学方法

光谱学方法是基于与物质结构和组成相关的特征信息，相比于点式化学测量方法，光谱学方法无需样品准备，具有快速，非破坏，高效，动态等优点，适用于现场快速检测以及实时在线分析。光谱学方法可以避免采样式的繁琐过程以及采样过程中可能带来 © Copyright PHOTONTECK All rights reserved．

的干扰，使得测量结果更为准确。目前适用于气体在线分析的光谱学方法主要有：非色散红外（NDIR），傅立叶变换红外光谱（FTIR），差分吸收激光雷达（DIAL），差分光学吸收光谱（DOAS）和可调谐二极管激光吸收光谱（TDLAS）等。

1，NDIR
NDIR 技术利用普通红外光源，基于气体在红外波段的特定吸收进行定性和定墨检测。NDIR 技术常采用电调制光源，并利用滤光片对红外光的波段进行选择，从而对特定气体进行检测。但是NDIR 方法由于测量谱的范围宽，故此选择性差，测量结果易于受到共存干扰物的影响。

2，FTIR

FTIR 技术利用迈克尔逊干涉仪使样品路和参考路的光产生干涉，并通过傅立叶变换将干涉图转换为红外光谱图，从而得到气体成分的光谱信息。

3，DIAL

DIAL 的基本概念是由 Schotland 在用激光雷达测量大气水汽的空间分布时提出的，它是利用大气本身的后向散射回波来进行测量的。激光发出两束光，其中一束光的波长能够被气体吸收，另一束光波长不被气体吸收，将散射回来的两束光强信号进行比较分析即可得到气体的吸收。

4，DOAS

DOAS 是在紫外和可见波段对气体分子的特征吸收进行检测分析的技术。DOAS将经过气体吸收后的光学厚度变化分为随波长的快速变化部分（即所谓的＂高频成分＂）和随波长的缓慢变化部分（即＂低频成分＂）。

5，TDLAS

根据Lambert－Beer定律和波长随注入电流和温度改变的特性，实现对分子吸收谱线的测量，然后通过对气体吸收后的光进行光谱分析，可以准确得出被测各项气体指标参数。LDLAS主要应用于环境监测，工业过程控制，生物和医学研究等领域光谱检测。

